\(\int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\) [341]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 110 \[ \int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {64 i a^3 \sec ^7(c+d x)}{693 d (a+i a \tan (c+d x))^{7/2}}+\frac {16 i a^2 \sec ^7(c+d x)}{99 d (a+i a \tan (c+d x))^{5/2}}+\frac {2 i a \sec ^7(c+d x)}{11 d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

64/693*I*a^3*sec(d*x+c)^7/d/(a+I*a*tan(d*x+c))^(7/2)+16/99*I*a^2*sec(d*x+c)^7/d/(a+I*a*tan(d*x+c))^(5/2)+2/11*
I*a*sec(d*x+c)^7/d/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {3575, 3574} \[ \int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {64 i a^3 \sec ^7(c+d x)}{693 d (a+i a \tan (c+d x))^{7/2}}+\frac {16 i a^2 \sec ^7(c+d x)}{99 d (a+i a \tan (c+d x))^{5/2}}+\frac {2 i a \sec ^7(c+d x)}{11 d (a+i a \tan (c+d x))^{3/2}} \]

[In]

Int[Sec[c + d*x]^7/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(((64*I)/693)*a^3*Sec[c + d*x]^7)/(d*(a + I*a*Tan[c + d*x])^(7/2)) + (((16*I)/99)*a^2*Sec[c + d*x]^7)/(d*(a +
I*a*Tan[c + d*x])^(5/2)) + (((2*I)/11)*a*Sec[c + d*x]^7)/(d*(a + I*a*Tan[c + d*x])^(3/2))

Rule 3574

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*b*(
d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2
, 0] && EqQ[Simplify[m/2 + n - 1], 0]

Rule 3575

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] + Dist[a*((m + 2*n - 2)/(m + n - 1)), Int[(
d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0]
 && IGtQ[Simplify[m/2 + n - 1], 0] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = \frac {2 i a \sec ^7(c+d x)}{11 d (a+i a \tan (c+d x))^{3/2}}+\frac {1}{11} (8 a) \int \frac {\sec ^7(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx \\ & = \frac {16 i a^2 \sec ^7(c+d x)}{99 d (a+i a \tan (c+d x))^{5/2}}+\frac {2 i a \sec ^7(c+d x)}{11 d (a+i a \tan (c+d x))^{3/2}}+\frac {1}{99} \left (32 a^2\right ) \int \frac {\sec ^7(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx \\ & = \frac {64 i a^3 \sec ^7(c+d x)}{693 d (a+i a \tan (c+d x))^{7/2}}+\frac {16 i a^2 \sec ^7(c+d x)}{99 d (a+i a \tan (c+d x))^{5/2}}+\frac {2 i a \sec ^7(c+d x)}{11 d (a+i a \tan (c+d x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.86 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.70 \[ \int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {2 \sec ^6(c+d x) (44+107 \cos (2 (c+d x))+91 i \sin (2 (c+d x))) (i \cos (3 (c+d x))+\sin (3 (c+d x)))}{693 d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[Sec[c + d*x]^7/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(2*Sec[c + d*x]^6*(44 + 107*Cos[2*(c + d*x)] + (91*I)*Sin[2*(c + d*x)])*(I*Cos[3*(c + d*x)] + Sin[3*(c + d*x)]
))/(693*d*Sqrt[a + I*a*Tan[c + d*x]])

Maple [A] (verified)

Time = 6.94 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.90

method result size
default \(\frac {\frac {256 i \sec \left (d x +c \right )}{693}+\frac {256 \sec \left (d x +c \right ) \tan \left (d x +c \right )}{693}+\frac {32 i \left (\sec ^{3}\left (d x +c \right )\right )}{693}+\frac {160 \tan \left (d x +c \right ) \left (\sec ^{3}\left (d x +c \right )\right )}{693}+\frac {2 i \left (\sec ^{5}\left (d x +c \right )\right )}{99}+\frac {2 \tan \left (d x +c \right ) \left (\sec ^{5}\left (d x +c \right )\right )}{11}}{d \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}\) \(99\)

[In]

int(sec(d*x+c)^7/(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/693/d/(a*(1+I*tan(d*x+c)))^(1/2)*(128*I*sec(d*x+c)+128*sec(d*x+c)*tan(d*x+c)+16*I*sec(d*x+c)^3+80*tan(d*x+c)
*sec(d*x+c)^3+7*I*sec(d*x+c)^5+63*tan(d*x+c)*sec(d*x+c)^5)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.05 \[ \int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {64 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-99 i \, e^{\left (4 i \, d x + 4 i \, c\right )} - 44 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - 8 i\right )}}{693 \, {\left (a d e^{\left (10 i \, d x + 10 i \, c\right )} + 5 \, a d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, a d e^{\left (6 i \, d x + 6 i \, c\right )} + 10 \, a d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, a d e^{\left (2 i \, d x + 2 i \, c\right )} + a d\right )}} \]

[In]

integrate(sec(d*x+c)^7/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-64/693*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-99*I*e^(4*I*d*x + 4*I*c) - 44*I*e^(2*I*d*x + 2*I*c) - 8*I)
/(a*d*e^(10*I*d*x + 10*I*c) + 5*a*d*e^(8*I*d*x + 8*I*c) + 10*a*d*e^(6*I*d*x + 6*I*c) + 10*a*d*e^(4*I*d*x + 4*I
*c) + 5*a*d*e^(2*I*d*x + 2*I*c) + a*d)

Sympy [F]

\[ \int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int \frac {\sec ^{7}{\left (c + d x \right )}}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \]

[In]

integrate(sec(d*x+c)**7/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**7/sqrt(I*a*(tan(c + d*x) - I)), x)

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 474 vs. \(2 (86) = 172\).

Time = 0.38 (sec) , antiderivative size = 474, normalized size of antiderivative = 4.31 \[ \int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=-\frac {2 \, {\left (-151 i \, \sqrt {a} - \frac {542 \, \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {484 i \, \sqrt {a} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {22 \, \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {627 i \, \sqrt {a} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {1452 \, \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {1452 \, \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {627 i \, \sqrt {a} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {22 \, \sqrt {a} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {484 i \, \sqrt {a} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} - \frac {542 \, \sqrt {a} \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}} + \frac {151 i \, \sqrt {a} \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}}\right )} \sqrt {\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1} \sqrt {\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1}}{693 \, {\left (a - \frac {6 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {15 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {20 \, a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {15 \, a \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {6 \, a \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} + \frac {a \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}}\right )} d \sqrt {-\frac {2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1}} \]

[In]

integrate(sec(d*x+c)^7/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-2/693*(-151*I*sqrt(a) - 542*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) + 484*I*sqrt(a)*sin(d*x + c)^2/(cos(d*x +
 c) + 1)^2 - 22*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 627*I*sqrt(a)*sin(d*x + c)^4/(cos(d*x + c) + 1)^
4 - 1452*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 1452*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 627*
I*sqrt(a)*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 22*sqrt(a)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - 484*I*sqrt(a)
*sin(d*x + c)^10/(cos(d*x + c) + 1)^10 - 542*sqrt(a)*sin(d*x + c)^11/(cos(d*x + c) + 1)^11 + 151*I*sqrt(a)*sin
(d*x + c)^12/(cos(d*x + c) + 1)^12)*sqrt(sin(d*x + c)/(cos(d*x + c) + 1) + 1)*sqrt(sin(d*x + c)/(cos(d*x + c)
+ 1) - 1)/((a - 6*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 15*a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 20*a*sin(
d*x + c)^6/(cos(d*x + c) + 1)^6 + 15*a*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 6*a*sin(d*x + c)^10/(cos(d*x + c)
 + 1)^10 + a*sin(d*x + c)^12/(cos(d*x + c) + 1)^12)*d*sqrt(-2*I*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)
^2/(cos(d*x + c) + 1)^2 - 1))

Giac [F]

\[ \int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{7}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^7/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^7/sqrt(I*a*tan(d*x + c) + a), x)

Mupad [B] (verification not implemented)

Time = 6.63 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.95 \[ \int \frac {\sec ^7(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx=\frac {64\,{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}\,\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,44{}\mathrm {i}+{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,99{}\mathrm {i}+8{}\mathrm {i}\right )}{693\,a\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^5} \]

[In]

int(1/(cos(c + d*x)^7*(a + a*tan(c + d*x)*1i)^(1/2)),x)

[Out]

(64*exp(- c*1i - d*x*1i)*(a - (a*(exp(c*2i + d*x*2i)*1i - 1i)*1i)/(exp(c*2i + d*x*2i) + 1))^(1/2)*(exp(c*2i +
d*x*2i)*44i + exp(c*4i + d*x*4i)*99i + 8i))/(693*a*d*(exp(c*2i + d*x*2i) + 1)^5)